
  7-  1

Chapter 7  Linear Predictive Speech Processing 
 
In a variety of applications, it is desirable to compress a speech signal for efficient 
transmission or storage.  For example, to accommodate many speech signals in a given 
bandwidth of a cellular phone system, each digitized speech signal is compressed before 
transmission.  In the case of a digital answering machine, to save a memory space, a 
message is digitized and compressed.  For medium or low bit-rate speech coders, linear 
predictive coding (LPC) is most widely used.  Redundancy in a speech signal is removed 
by passing the signal through a speech analysis filter.  The output of the filter, termed the 
residual error signal, has less redundancy than original speech signal and can be 
quantized by smaller number of bits than the original speech.  The residual error signal 
along with the filter coefficients are transmitted to the receiver.  At the receiver, the 
speech is reconstructed by passing the residual error signal through the synthesis filter.  
To model a human speech production system, all-pole model (also known as the linear 
prediction model) is used.  In this chapter, human speech production system, 
spectrogram, speech analysis and speech synthesis using linear prediction are explained. 
 

7.1  Speech Production 
When a person speaks, his or her lungs work like a power supply of the speech 
production system.  The glottis supplies the input with the certain pitch frequency (F0).  
The vocal tract, which consists of the pharynx and the mouth and nose cavities, works 
like a musical instrument to produce a sound.  In fact, different vocal tract shape would 
generate a different sound.  To form different vocal tract shape, the mouth cavity plays 
the major role.  To produce nasal sounds, nasal cavity is often included in the vocal tract.  
The nasal cavity is connected in parallel with the mouth cavity.  The simplified vocal 
tract is shown in Fig. 7.1. 
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 Fig. 7.1  Simplified view of a vocal tract 
 
 
The glottal pulse generated by the glottis is used to produce vowels or voiced sounds.  
And the noise-like signal is used to produce consonants or unvoiced sounds.  These are 
shown in Fig. 7.2. 
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                 T0 
 
  (a)  glottal pulse excitation for a voiced sound. 
 
 
 
 
 
 
 
  (b)  hiss (white noise) input for a unvoiced sound. 
 
 
 
 Fig. 7.2  Two kinds of inputs used to generate sound (T0 : pitch period). 
 
 
Pitch frequency F0 (1/T0) varies in different people.  A little child’s pitch frequency can 
go as high as 400 Hz.  Adult male’s pitch frequency is as low as 100 Hz.  Adult female’s 
pitch frequency is between 200 Hz and 300 Hz range.  This glottal pulse excites a vocal 
tract cavity and produces a vowel (or voiced) sound.  Some characteristics of a typical 
vowel sound are shown below. 
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  Fig. 7.3  Characteristics of a typical vowel sound 
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As shown in Fig. 7.3 (c), there are at least four resonant peaks visible.  The frequencies at 
which the resonant peaks occur are called the formant frequencies (or simply formants).  
Formant frequencies, F1 and F2, are very distinct from the plot.  Formants F3 and F4 are 
not quite distinct.  These formant frequencies are often used for speech recognition.  
From the spectrum of the speech, one can see that there are many harmonics of F0, pitch 
frequency.  Some of them have higher amplitude according to formants.  From the 
spectrum of speech, it is not easy to extract formants because of many harmonious peaks.   
On the other hand, by inputting a noise-like signal to the vocal tract, unvoiced sound such 
as plosives and fricatives are produced  
 To analyze or examine a speech signal, a spectrogram is widely used.  Spectrogram is 
similar to a musical score as shown in Fig. 7.4 (a). 
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  (b) Spectrogram of a vowel    (c) Spectrogram of a phrase  
             sound – “ee”         – “Discrete Fourier Transform” 
 
 Fig. 7.4 Musical score, spectrograms of a vowel sound and one short phrase. 
 
 
 From the musical score, the first top note is high “A” whose frequency is 440 Hz.  
The note is played for a half beat followed by a half-beat pause.  The first bottom note is 
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“C” and is played together with “A” note.  Obviously, the “C” note has lower frequency 
than “A” note.  The vertical axis in the musical score is for frequency, and the horizontal 
axis is for time.  Fig. 7.4 (b) shows the spectrogram of a vowel sound – “ah.”  It is, in 
fact, a three-dimensional plot on a two-dimensional space: high amplitude is indicated by 
dark spot and low amplitude is indicated by light spot.  The dark spots at low frequencies 
indicate the presence of strong harmonics at low frequencies.  Because one vowel sound 
was uttered over the given time interval, there is almost no change in spectrogram.  Fig 
7.4 (c) shows the spectrogram of the utterance – “This is a test.”  Locations of strong 
harmonics change over time for vowels.  However, for consonants, harmonics are not 
quite visible. 
 The following are some of the important properties of speech. 
• Fricatives (s, sh, f, th) are produced when the vocal tract is constricted at some 

location and air is forced through that constriction. 
• Plosives (p, k, t) are produced when the end of the vocal tract is constricted or closed 

momentarily while air pressure built up, then pressure is suddenly released. 
• There are about 40 phonemes (sound elements) in English (16 vowels, 24 

consonants). 
• In normal speech, 10 to 15 phonemes are spoken in one second. 
 
 
7.2  Linear Prediction Model 
 In this section, an all-pole system (or the linear prediction system) is used to model a 
vocal tract as shown in Fig. 7.5. 
 
 
 
 
  glottal pulse 
  (for voiced sound)   All-Pole System 
     input                    (Linear Prediction)            Speech Output 
  white noise 
  (for unvoiced sound) 
 
 
 Figure 7.5  Simplified model of the speech production 
 
 
An efficient algorithm known as the Levinson-Durbin algorithm is used to estimate the 
linear prediction coefficients from a given speech waveform. 
 Assume that the present sample of the speech is predicted by the past M samples of 
the speech such that 
 

 1 2
1

( ) ( 1) ( 2) ( ) ( )
M

M i
i

x n a x n a x n a x n M a x n i
=

= − + − + + − = −∑% L   (7.1) 
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where ~( )x n  is the prediction of x(n), x(n−i) is the i-th step previous sample, and {ai} are 
called the linear prediction coefficients.  The error between the actual sample and the 
predicted one can be expressed as 
 

 
1

( ) ( ) ( ) ( ) ( )
M

i
i

n x n x n x n a x n i
=

ε = − = − −∑% .     (7.2) 

 
The sum of the squared error to be minimized is expressed as 
 

 
2

2

1
( ) ( ) ( )

M

i
n n i

E n x n a x n i
=

⎛ ⎞
= ε = − −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ .     (7.3) 

 
We would like to minimize the sum of the squared error.  By setting to zero the derivative 
of E with respect to ai (using the chain rule), one obtains 
 

 
1

2 ( ) ( ) ( ) 0
M

i
n i

x n k x n a x n i
=

⎛ ⎞− − − =⎜ ⎟
⎝ ⎠

∑ ∑        for k = 1, 2, 3, L, M.   (7.4) 

 
Equation (7.4) results in M unknowns in M equations such that 
 

 1 2( ) ( 1) ( ) ( 2) ( ) ( )M
n n n

a x n k x n a x n k x n a x n k x n M− − + − − + + − −∑ ∑ ∑L  

            = x n k x n
n

( ) ( )−∑   for k = 1, 2, 3, L, M.   (7.5) 

 
Example 7.2.1 Write equations (7.2) through (7.5) for N = 5 and M = 2. 
 

From equation (7.2), there are five equations for n = 0, 1, 2, 3, 4. 
 

ε(0) = x(0) 
ε(1) = x(1) − a1x(0) 
ε(2) = x(2) − a1x(1) − a2x(0) 
ε(3) = x(3) − a1x(2) − a2x(1) 
ε(4) = x(4) − a1x(3) − a2x(2) 
 

The last three equations can be written as 
 

1

2

(2) (2) (1) (0)
(3) (3) (2) (1)
(4) (4) (3) (2)

x x x
a

x x x
a

x x x

ε⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ε = − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ε⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
or 
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 = −ε x Xa  
 
To minimize the squared error, εTε, we need to set to zero the derivative of it with 
respect to a, i.e. 
 
 ( ) ( )TT = − −ε ε x Xa x Xa  

 ( )2
T

T∂
= − − =

∂
X x Xa

a
ε ε 0 . 

 
Now we need to solve the following 2 by 2 matrix equation to find a1 and a2. 
 
 T T=X Xa X x  
 
which is 
 

 

3 2 3
2

1 0 11
2 2 2

2 2

0 0 0

( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( ) ( 2)

n n n

n n n

x n x n x n x n x n
a
a

x n x n x n x n x n

= = =

= = =

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦+ +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 

 
This method is called the covariance method. 
 
 

Let us assume that a speech signal is divided into many segments (or frames) each with N 
samples.  If the length of each segment (or frame) is short enough, the speech signal in 
the segment may be stationary.  In other words, the vocal tract model is fixed over the 
time period of one segment.  The length of each segment is usually chosen as 20-30 [ms].  
If a speech signal is sampled at the rate of 8,000 samples/s (as in telephone application) 
and the length of each segment is 20 ms, then the number of samples in each segment 
will be 160.  If the length is 30 ms, then the number of samples is going to be 240.   

If there are N samples in the sequence indexed from 0 to N−1 such that {x(n)} = 
{x(0), x(1), x(2), L, x(N−2), x(N−1)}, Equation (7.5) can be approximately expressed in 
terms of matrix equation.  (See Example 7.2.1 for an accurate matrix expression for M = 
2.) 
 

 

1

2

1

(0) (1) ( 2) ( 1) (1)
(1) (0) ( 3) ( 2) (2)

( 2) ( 3) (0) (1) ( 1)
( 1) ( 2) (1) (0) ( )

M

M

ar r r M r M r
ar r r M r M r

ar M r M r r r M
ar M r M r r r M

−

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

L

L

MM M O M M M

L

L

 (7.6)  

          R a      = r. 
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where 
 

 r k x n x n k
n

N k

( ) ( ) ( )= +
=

− −

∑
0

1

.       (7.7)  

 
This is called the autocorrelation method.  There is a difference between this 
autocorrelation method and the covariance method.  However, when N is large enough 
there is not much difference.  Also there is an advantage with the autocorrelation method 
as the synthesis filter is always stable.  To solve the matrix equation (7.6), Gauss 
elimination, iteration method, or QR decomposition can be used.  In any case, an order of 
M3 multiplications is required to solve the equation.  However, because of the special 
characteristics of the matrix, the number of multiplications can be reduced to the order of 
M2 with the Levinson-Durbin algorithm that will be introduced in the next section. 
 
 Once the linear prediction coefficients {ai} are found, Equation (7.2) can be used to 
compute the error sequence ε(n).  The implementation of Equation (7.2), where x(n) is 
the input and ε(n) is the output, is called the analysis filter and shown in Figure 7.6. 
 
 
 
 
  x(n)  A(z)  ε(n) 
 
 
 
 
  Fig. 7.6  Speech Analysis Filter 
 
 
The transfer function is given by 
 

 
1

( ) 1
M

i
i

i
A z a z−

=

= −∑ .        (7.8) 

 
Because ε(n), residual error, has less standard deviation and less correlated than speech 
itself, smaller number of bits is needed to quantize the residual error sequence.   
 Equation (7.2) can be rewritten as the difference equation of a digital filter whose 
input is ε(n) and output is x(n) such that 
 

 
1

( ) ( ) ( )
M

i
i

x n a x n i n
=

= − + ε∑ .       (7.9) 

 
The implementation of equation (7.9) is called the synthesis filter and is shown in Figure 
7.7. 
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  ε(n)  1/A(z)  x(n) 
 
 
 
  Fig. 7.7  Speech Synthesis Filter 
 
 
If both the linear prediction coefficients and the residual error sequence are available, the 
speech signal can be reconstructed using the synthesis filter.  In practical speech coders, 
linear prediction coefficients and residual error samples need to be compressed before 
transmission.  Instead of quantizing the residual error, sample by sample, several 
important parameters such as pitch period, code for a particular excitation, etc are 
transmitted.  At the receiver, the residual error is reconstructed from the parameters. 
 
 
7.3  Levinson-Durbin Recursive Method 
 
 In this section the Levinson-Durbin method is introduced to solve equation (7.6) 
recursively.  The Levinson-Durbin method is efficient, as it needs only the order of M2 
multiplications to compute the linear prediction coefficients. 
 The sum of squared errors of the M-th order prediction (or simply the M-th order 
prediction error) in equation (7.3) can be rewritten as 
 

 
1

( ) ( ) ( ) ( )
M

M i
n n i

E x n n a x n i n
=

⎛ ⎞= ε − − ε⎜ ⎟
⎝ ⎠

∑ ∑ ∑      (7.10) 

 
where subscript M of EM denotes the order of prediction.  Equation (7.4) can be rewritten 
as 
 

 ( ) ( ) 0
n

x n i nε− =∑  for i = 1, 2, 3, L, M.      (7.11)  

 
Because of equation (7.11), the second summation of equation (7.10) is zero.  Thus, the 
final expression of the prediction error becomes 
 

 
1

( ) ( ) ( )
M

M i
n i

E x n x n a x n i
=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑ ∑       (7.12)  

       = r(0) − a1r(1) − a2r(2) − L − aM−1r(M−1) − aMr(M) = 
1

(0) ( )
M

i
i

r a r i
=

−∑ . 

 
We now want to develop a recursive method to solve equation (7.6).  Let us start from the 
order m = 0 and increase it until the desired order reaches. 
 



  7-  9

m=0: When m = 0 (i.e., when no prediction is made), the error is expressed from 
equation (7.12). 
 
 E0 = r(0).         (7.13) 
 
m=1: When m = 1, 
 
 E1 = r(0) − a11r(1)         (7.14) 
 
where the second subscript 1 of a11 indicates that the prediction order m in this case is 1.  
The solution to equation (7.6) is 
 
 a11 = r(1)/r(0) = κ1        (7.15)  
 
where κ1 is termed the reflection coefficient.  Note that magnitude of κ1 is less than 1 
(|κ1|<1) as |r(1)| is less than r(0).  Now the prediction error for m = 1 becomes 
 
 E1 = r(0) − κ1r(1) = r(0)[1−κ1

2] = E0[1−κ1
2].     (7.16)  

 
One can easily show that the prediction error E1 is smaller than E0. 
 
m=2: When m = 2, equations (7.12) and (7.6) can be combined in a single matrix 
equation 
 

 
2

12

22

(0) (1) (2) 1
(1) (0) (1) 0
(2) (1) (0) 0

r r r E
r r r a
r r r a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (7.17)  

 
Assume that the solution can be found recursively as shown below. 
 

 12 11 2 11

22

1 1 0

0 1
a a a
a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − − κ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

       (7.18)  

 
where κ2 is the reflection coefficient.  The subscript 2 of a12 and a22 indicates that these 
are the second order linear prediction coefficients.  When the prediction order m = 1, one 
can easily show that 
 

 1

11

1(0) (1)
(1) (0) 0

r r E
ar r

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

 
Now equation (7.17) becomes  
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1 2 2

11 2 11 2

2 1

(0) (1) (2) 1 0
(1) (0) (1) 0 0 0
(2) (1) (0) 0 1 0

r r r E q E
r r r a a
r r r q E

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − κ − = − κ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

  (7.20)  

 
where 
 
 q2 = r(2) − a11r(1).         (7.21)  
 
Because q2 − κ2E1 = 0 from equation (7.20), the reflection coefficient becomes 
 
 κ2 = q2/E1.          (7.22)  
 
The new prediction error for M = 2 becomes 
 
 E2 = E1 − κ2q2 = E1[1−κ2

2].        (7.23)  
 
The linear prediction coefficients can be obtained using Equation (7.18) such that 
 
 a12 = a11 − κ2a11        (7.24)  
 a22 = κ2 
 
m=3: When m = 3, one can show that 
 
 q3 = r(3) − a12r(2) − a22r(1) 
 κ3 = q3/E2         (7.25)  
 E3 = E2[1−κ3

2] 
 
with the following assumption. 
 

 13 12 22
3

23 22 12

33

1 1 0

0 1

a a a
a a a
a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − κ
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

       (7.26)  

 
Now the linear coefficients can be obtained from (7.26). 
 
 ai3 = ai2 − κ3a(3−i)2    for i = 1, 2.       (7.27)  
 a33 = κ3. 
 
 
Recursive Algorithm:  

 
 Now the recursive solution method for any prediction order M is described below. 
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Initial values: 
 E0 = r(0) 
 a11 = κ1 = r(1)/E0 
 E1 = E0(1−κ1

2). 
With m ≥ 2, the following recursion is performed 

 (i)  qm = r(m) − 
1

( 1)
1

( )
m

i m
i

a r m i
−

−
=

−∑  

 (ii)  κm = 
( 1)

m

m

q
E −

 

 (iii)  amm = κm 
 (iv)  aim = ai(m−1) − κma(m−i)(m−1)  for i = 1, L, m−1 
 (v)  Em = Em−1[1−κm

2]. 
 (vi)  If m < M, then increase m to m+1 and go to (i).  If m = M, then stop. 

 
 In the recursion, there are 2m+1 multiplications are involved for each m.  Thus, the 
total number of multiplications to estimate prediction coefficients for the prediction 
order, M, becomes 

 # multiplications = 
1
(2 1)

M

m
m

=

+∑  = M(M+2).     (7.28) 

 
Readers may wonder what kind of prediction order is used in practice.  When the 
sampling rate is 8 kHz, 4 kHz is the maximum frequency.  There usually is one resonant 
peak per one kHz of bandwidth.  That means there are 4 resonant peaks in speech signal.  
To fit 4 resonant peaks 8 poles are required.  In addition a couple of extra poles may be 
necessary to take care of some zeros.  Thus, the order of prediction, M, is usually chosen 
to be 10.  Another reason is that the prediction error does not decrease much beyond M = 
10. 
 
 
7.4  Lattice Implementation of LPC Filters 
 
 Linear prediction coefficients are computed recursively using the Levinson-Durbin 
algorithm.  The first order prediction coefficient a11 is the same as the reflection 
coefficient κ1.  The mth order linear prediction coefficients are obtained from the (m−1)th 
order prediction coefficients and the reflection coefficient κm .  Thus, M linear prediction 
coefficients are equivalent to M reflection coefficients.  If reflection coefficients are 
given, the corresponding linear prediction coefficients can be obtained or vice versa.  
Quantization of reflection coefficients is easier because of the well-defined range of 
values that they take on.  Note that the absolute value of reflection coefficients is never 
greater than one (see Prob. 7.2).  This is the reason why reflection coefficients instead of 
linear prediction coefficients are often used to represent a vocal tract filter.  In this 
section, linear predictive coding (LPC) filters are implemented in a lattice form using 
reflection coefficients. 
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 The prediction error for the mth order prediction is rewritten as 
 

 
1

( ) ( ) ( )
m

m im
i

n x n a x n i
=

ε = − −∑        (7.28)  

 
where εm(n) indicates that this error is the forward prediction error.  Let us assume that 
the backward linear prediction of x(n−m) is made based on x(n), x(n−1), L, and 
x(n−m+1).  The backward prediction error βm(n) is defined as follows. 
 

 
1

( ) ( ) ( )
m

m im
i

n x n m a x n m i
=

β = − − − +∑       (7.29)  

 
Now the (m−1)th  forward prediction error is given by 
 

 
1

1 ( 1)
1

( ) ( ) ( )
m

m i m
i

n x n a x n i
−

− −
=

ε = − −∑       (7.30) 

 
and the (m−1)th  backward prediction error is  
 

 
1

1 ( 1)
1

( ) ( 1) ( 1 )
m

m i m
i

n x n m a x n m i
−

− −
=

β = − + − − + +∑ .    (7.31)  

 
Because the recursive formula for linear prediction coefficients is given by 
 
 ( 1) ( )( 1)im i m m m i ma a a− − −= − κ  for i = 1, 2, L, m−1    (7.32a)  
 amm = κm,          (7.32b) 
 
It can be shown that 
 

 1 1

1 1

( ) ( ) ( 1)
( ) ( 1) ( )

m m m m

m m m m

n n n
n n n

− −

− −

ε = ε − κ β −
β = β − − κ ε

      (7.33) 

 
for m = 1, 2, L, M. 
The initial values are given by 
 
 ε β0 0( ) ( ) ( )n n x n= = .        (7.34) 
 
The final value is given by 
 
 ε(n) = εM(n).          (7.35)  
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Note 
 
Proof of Equation (7.33) 
 

Let 
1

( ) 1
m

i
m im

i
A z a z−

=

= −∑ and 
1

1 ( 1)
1

( ) 1
m

i
m i m

i
A z a z

−
−

− −
=

= −∑ . 

 
From equations (7.32a) and (7.32b),  
 

1
1 1( ) ( ) ( ) m

m m m mA z A z A z z− −
− −= − κ . 

 
Equations (7.28) and (7.29) respectively are expressed in terms of their z-transforms 
 

( ) ( ) ( )m mz A z X zε =  
 
and 
 

1( ) ( ) ( )m
m mz A z z X z− −β = . 

 
Likewise from equations (7.30) and (7.31), the following are obtained. 
 

1 1( ) ( ) ( )m mz A z X z− −ε =  
 

1 1
1 1( ) ( ) ( )m

m mz A z z X z− − +
− −β =  

 
Thus, 
 

1
1 1( ) ( ) ( ) ( )m

m m m mz A z A z z X z− −
− −⎡ ⎤ε = − κ⎣ ⎦  

  = 1
1 1( ) ( )m m mz z z−− −ε − κ β  

 
and 
 

1( ) ( ) ( )m
m mz A z z X z− −β =  

  = 1
1 1( ) ( ) ( )m m

m m mA z A z z z X z− −
− −⎡ ⎤− κ⎣ ⎦  

  = 1
1 1( ) ( )m m mz z z−
− −β − κ ε  

 
Q.E.D.



  7-  14

Thus, the analysis filter can be implemented as shown in Figure 7.8 where the input is the 
speech sequence and the output is the forward prediction error. 
 
 
 
 
 x(n)  ε0(n)  ε1(n)  ε2(n)  εM−1(n)    εM(n) 
         +       +         +    ε(n) 
          -κ1       -κ2        -κM 
 
          -κ1        -κ2           
   z−1      + z−1      +   z−1   
  β0(n)           β1(n)            β2(n)        βM−1(n)   
 
 

Figure 7.8  Lattice Implementation of the LPC analysis filter using reflection coefficients 

 
 
From each frame of speech samples, M reflection coefficients are computed.  Because 
important information about the vocal tract model is extracted in the form of reflection 
coefficients, the output of the LPC analysis filter using reflection coefficients will have 
less redundancy than the original speech.  Thus, less number of bits is required to 
quantize this so-called residual error.  This quantized residual error along with the 
quantized reflection coefficients are transmitted or stored.  To play back, a lattice 
implementation of the LPC synthesis filter is required.  In this case, the input is the 
residual error and the output is the reconstructed speech.  By reversing all the arrows in 
the top part of the analysis filter, one can implement the synthesis filter as shown in Fig. 
7.9. 
 
 
 x(n)  ε0(n)  ε1(n)  ε2(n)  εM−1(n)         εM(n) 
         +       +         +            ε(n) 
          κ1        κ2        κM 
 
          -κ1        -κ2          
   z−1      + z−1      +   z−1      
  β0(n)           β1(n)            β2(n)        βM−1(n)   
 
 Figure 7.9  Lattice Implementation of the LPC synthesis filter using reflection coefficients 
 
 
In the synthesis filter, the initial value is 
 

εM(n) = ε(n),          (7.36)  
 
the final values are 
 
 ε0(n) = β0(n) = x(n),         (7.37)  
 
and  
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 1 1

1 1

( ) ( ) ( 1)
( ) ( 1) ( )

m m m m

m m m m

n n n
n n n

− −

− −

ε = ε + κ β −
β = β − − κ ε

      (7.38)  

 
for m = M, M−1, M−2, L, 2, 1. 
 
 
7.5  Line Spectral Frequencies (LSF) 
 
 Phonemes are recognized by their own resonant frequencies.  Thus, maintaining 
original speech spectrum is very important after the quantization of parameters.  
Quantization of linear prediction coefficients or reflection coefficients will result in error 
in the speech spectrum.  Problem is that error in each of linear prediction coefficients or 
reflection coefficients is not directly related to error in any of resonant frequencies.  
However, each resonant frequency in speech spectrum is directly related to corresponding 
line spectral frequencies (LSF).  If there is error in a resonant frequency because of 
quantization, the error is localized. 
 Let Fm(z) be the z-transform of the sequence {1, −a1m, −a2m, L, −amm, 0} such that 
 
 1 2

1 2( ) 1 ( )m
m m m mmF z a z a z a z A z− − −= − − − − =L     (7.39) 

 
and Gm(z) be the z-transform of the reversed sequence {0, −amm, −a(m−1)m, L, −a2m, −a1m, 
1} such that 
 
 1 2 ( 1) ( 1)

( 1) 2 1( ) m m m
m mm m m m mG z a z a z a z a z z− − − − − − +

−= − − − − − +L .  (7.40) 
 
Then the Levinson-Durbin recursive formula for m = 1, 2, L, M becomes 
 
 Fm(z) = Fm−1(z) − κmGm−1(z)        (7.41)  
 
and 
 
 Gm(z) = z−1[Gm−1(z) − κmFm−1(z)]       (7.42)  
 
where initial conditions F0(z) = 1 and G0(z) = z−1. 
 Now using FM(z) and GM(z), two types of FM+1(z), P(z) and Q(z), can be constructed 
under the conditions κM+1 = −1 and κM+1 = 1, respectively.  The condition |κM+1| = 1 is 
necessary so that the (M+1)th order polynomials P(z) and Q(z) have roots on the unit 
circle.  If roots are on the unit circle, only the angles or normalized frequencies are 
needed to represent the roots of P(z) and Q(z). 
 Using equation (7.41), P(z) and Q(z) can be represented as 
 
 P(z) = FM(z) + GM(z)         (7.43) 
 
and 



  7-  16

 
 Q(z) = FM(z) − GM(z).         (7.44)  
 
Using equations (7.43) and (7.44), one obtains 
 

 FM(z) = P z Q z( ) ( )+
2

.        (7.45)  

 
A pair of complex conjugate roots of P(z) or Q(z) will give the following expression if 
they are on the unit circle. 
 
 1 1 1 2(1 )(1 ) 1 2 cosi ij j

ie z e z z zθ − θ− − − −− − = − θ +      (7.46) 
 
It has been proved1 that the roots of the two polynomials are located on the unit circle and 
interlaced if the original synthesis filter, H(z) = 1/A(z) = 1/FM(z), is stable.  If M is even, 
P(z) and Q(z) are factored as 
 
 1 1 2

1,3, , 1

( ) (1 ) (1 2 cos )i
i M

P z z z z− − −

= −

= + − θ +∏
L

     (7.47)  

 
and 
 
 1 1 2

2,4, ,

( ) (1 ) (1 2 cos )i
i M

Q z z z z− − −

=

= − − θ +∏
L

     (7.48)  

 
The coefficients {θi} are referred to as the line spectral frequencies (LSF).  The 
parameters {θi} are ordered as 
 
 0 < θ1 < θ2 <  L < θM−1 < θM < π.      (7.49)  
 
Odd-indexed {θi} and even-indexed {θi} are interlaced. 
 Using equation (7.45), the square of the magnitude response of the synthesis filter can 
be represented as 
 

 |H(θ)|2 = 2
1
( )MF θ

        (7.50)  

 = 22|P(θ)+Q(θ)|−2 

 = 
1

2 2 2 2

1,3, , 1 2,4, ,

2 cos (cos cos ) sin (cos cos )
2 2

M
i i

i M i M

−

−

= − =

⎡ ⎤θ θ
θ− θ + θ− θ⎢ ⎥

⎣ ⎦
∏ ∏
L L

 

 

                                                 
1 F. K. Soong and B.-H. Juang, “Line Spectrum Pair and Speech Compression,” Proceedings of the IEEE 
International Conference on Acoustics, Speech, and Signal Processing, San Diego, Calif., vol. 1, pp.1.10.1-
4, 1984. 
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The first term inside the parentheses in Equation (7.50) approaches 0 when θ approaches 
π or one of the {θi} (i = 1,3,L,M−1), and the second term approaches 0 when θ 
approaches 0 or one of the {θi} (i = 2,4,L,M).  Therefore, when two LSF parameters, θi 
and θj, are close together, the gain of H(z) becomes large and resonance occurs.  Strong 
resonance occurs when two or more θi’s are concentrated.  That is, the speech spectrum is 
directly related to LSF parameters {θi}.  Thus, if there is error in the parameters because 
of quantization, the error is localized.  Typical magnitude plots of P(z) and Q(z) are 
shown in Fig. 7.10. 
 
 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

P(z)
Q(z)

 
 
 Fig.7.10  Magnitude plots of P(z) and Q(z). Prediction order M is chosen to be 12 in this case. 
 
 
 Roots of the polynomials P(z) and Q(z) can be obtained using a root finding technique 
via companion matrix or Newton’s iteration method.  Because at each LSF parameter the 
magnitude response of either P(z) or Q(z) is zero, LSF parameters can be found 
alternatively by the following procedure. 
 
1. Find linear prediction coefficients. 
2. Form P(z) and Q(z). 
3. Estimate the magnitude response of P(z) and Q(z).  FFT may be used for this. 
4. Frequencies at which the local minima occur are LSF parameters. 
 
The procedure for searching for the roots is largely reduced using the relationship 0 < θ1 
< θ2 <  L < θM−1 < θM < π. 
 The magnitude spectrum based on the LPC parameters can be compared to the 
magnitude spectrum computed based on the LSF estimation.  When the FFT length is 
128, there usually is a large difference between the two spectra as shown in Fig. 7.11.  
 

×π
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 Fig.7.11. Magnitude spectra computed based on the LPC and the LSF estimation when 

FFT length is 128. 
 
 
A typical difference between the magnitude spectra when 256-point FFT is used is given 
in Fig. 7.12. 
 
 

  
0 0.2 0.4 0.6 0.8 1
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-10
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20

30
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LSF (256 pt.)

[dB] 

 
 

 Fig.7.12 Magnitude spectra computed based on the LPC and the LSF estimation when 
FFT length is 256. 

 
 
When 512-point FFT is used, the difference is negligible. 
 
 
7.6  LSF Analysis-Synthesis System 
 
 In LSF speech synthesis, a digital filter H(z) can be constructed using the LSF 
parameters (θ1, θ2, L, θM).  Since H(z) = 1/FM(z), this transfer function can be realized by 
inserting a filter having a transfer function of FM(z) − 1 into a negative feedback path in 
the signal flow graph.  Based on equations (7.45), (7.47), and (7.48), when P is even, one 
can show that 

×π

×π
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( ) ( )1( ) 1 ( ) 1 ( ) 1
2MF z P z Q z− = − + −⎡ ⎤⎣ ⎦      (7.51)  

    ( ) ( ) ( ) ( )
1 21

1 1 1 2 1 2
1

3 1 1
odd odd odd

1 1
2

i MM

i j i
i j i
i j i

z c z c z c z z c z z
− −−

− − − − − −

= = =

⎡ ⎤
⎢ ⎥= + + + + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∏ ∏  

   ( ) ( ) ( ) ( )
1 2

1 1 1 2 1 2
2

4 2 2
even even even

1 1
2

i MM

i j i
i j i
i j i

z c z c z c z z c z z
− −

− − − − − −

= = =

⎡ ⎤
⎢ ⎥+ + + + + + − + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∏ ∏  

 
where 
 
 ci = −2cosθi for i = 1, 2, L, M. 
 
FM(z) − 1 can thus be constructed by a pair of trunk circuit as shown in Figure 7.13.  Each 
trunk circuit is a M/2-stage cascade connection of quadratic circuits: 
1 − 2cosθiz−1 + z−2.  The outputs at the middle of each stage on each trunk are 
successively summed up, and the outputs at the final stage are added or subtracted from 
the former value. 
 
 
 
      ε(n)                        x(n) 
 
 
 
                          −0.5z-1 
            z-1          z-1          z-1          z-1          z-1          z-1 
 
 
          c5        c3       c1 
 
 
 
 
          −1      c6       c4       c2 
 
 
            z-1          z-1          z-1          z-1          z-1          z-1 
 
 
 
 
 
 Figure 7.13  Signal flow graph of LSF synthesis filter (with M = 6). 
 
 
 
MATLAB Example 
 

x = wavread(‘ah.wav’); 
x = x(1:240); 
a = lpc(x, 10); 
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poly2rc(a) % This is to convert lpc to reflection coefficients 
poly2lsf(a) % Convert lpc to line spectral frequencies 

 
 
 
7.7  Pitch Estimation 
 
There are several ways to estimate the pitch of a voiced sound: autocorrelation method, 
average magnitude difference function and cepstrum. 
 
1.  Autocorrelation 
 
 The autocorrelation of a stationary sequence x(n) is defined as 
 

 R x n x n
N

x n x nx
n

N

( ) ( ) ( ) ( ) ( )τ τ τ= + = +
=

−

∑1
0

1

.     (7.52) 

 
where τ is termed the lag.  Auto means self or from one signal, and correlation means 
relation between two samples.  An autocorrelation is the average correlation between two 
samples from one signal that are separated by τ samples.  It should be noted that the 
upper limit in the summation will be less than N−1 when τ is positive, and the lower limit 
will be greater than 0 when τ is negative.  Thus, the autocorrelation can be rewritten as 
 

 R
N

x n x nx
n

N

(τ τ
τ

) ( ) ( )= +
=

− −

∑1
0

1

       (7.53) 

 
Because the number of items in the summation decreases as τ increases, the envelope of 
the autocorrelation decreases linearly as τ increases.  In some cases, to prevent this 
tapering, autocorrelation is defined alternatively as 
 

 $ ( ) ( ) ( )R
N

x n x nx
n

N

τ
τ

τ
τ

=
−

+
=

− −

∑1
0

1

.      (7.54) 

 
 
MATLAB Example 
 

plot(xcorr(x,’unbiased’)) 
 
 
 
2.  Average Magnitude Difference Function (AMDF) 
 
The average magnitude difference function uses the following property.  Suppose that a 
signal x(n) is periodic with period T.  Then the difference between two samples 
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 Diff(k) = x(n) − x(n+k)       (7.55) 
 
will be zero for k = 0, ±T, ±2T and so on.  Because a voiced sound is not exactly periodic, 
the short time average magnitude difference function (AMDF) is defined as 
 

 AMDF(k) = 
1

0

1 ( ) ( )
N k

n
x n x n k

N k

− −

=

− +
− ∑  for positive k.   (7.56) 

 
 
MATLAB Example 
 

for k = 1:240, 
amdf(k) = 0; 
for n = 1:240-k+1, 

amdf(k) = amdf(k) + abs(x(n)-x(n+k-1)); 
end 

  amdf (k) = amdf(k)/(240-k+1);  
end 

 plot(amdf) 
 
 
3.  Cepstrum 
 
There are two kinds of cepstra: the real cepstrum and the complex cepstrum.  Only the 
real cepstrum is explained here.  Suppose that x(n) is a speech signal.  The magnitude 
spectrum |X(k)| is obtained by computing the magnitude of the DFT of x(n).  The real 
cepstrum is defined as the inverse discrete Fourier transform of the logarithm of the 
magnitude response, i.e, 
 
 c(n) = IDFT{log|X(k)|}. 
 
where c(n) is termed the cepstrum and log is the natural logarithm. 
 
MATLAB Example 
 

X = fft(x); 
X = log(abs(X)); 
c = ifft(X); 
plot(real(c)) 
% Four commands above are equivalent to the command below 
plot(rceps(x)) 
 

 
 
7.8  Voiced/Unvoiced Detection 
 
A simplified speech production system is shown in Fig. 7.14. 
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          speech signal 
 
 
  
 

 
Figure 7.14  A simplified speech production system. 

 
 
One important task is segmentation and labeling of each segment as voiced of unvoiced.  
To identify whether the speech segment is voiced or unvoiced speech, spectral flatness 
measure, energy, and zero crossing rate are most widely used. 
 
1.  Spectral Flatness Measure 
 
One of the methods for detecting the voiced/unvoiced sections of speech is the spectral 
flatness measure.  The spectral flatness makes use of the property that the spectrum of 
pure noise is expected to be flat.  In other words, the spectrum of unvoiced section is flat 
and the spectrum of voiced section is less flat.  The spectral flatness measure (SFM) is 
given by 
 

 SFM = m

m

G
A

 

 
where Gm is the geometric mean of the magnitude spectrum and is determined by 
multiplying all the spectral lines together and raising the final product to one over the 
total number of spectral lines.  Am is the arithmetic mean of the magnitude spectrum and 
is obtained by taking the sum of the spectral lines divided by the number of spectral lines. 
 

 SFM = 

1
1

0
1

0

( )

1 ( )

N N

j
k

N

j
n

X k

X k
N

−

=
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏

∑
 

 
where Xj(k) is the magnitude of the N-point DFT of the jth frame of the speech signal.  
The spectral flatness measure ranges from 0.9 for a white noise to 0.1 for a voiced signal.  
The threshold is usually chosen to be 0.35 ~ 0.48. 

1

( )

1
M

m

m

m

G
H z

a z
−

=

=

− ∑
 

glottal pulse 
(for voiced speech) 

white noise 
(for unvoiced speech) 
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MATLAB Example 
 

X = abs(fft(x));  % x is 240-point long vowel sound 
am = mean(X); 
gm = 1; 
for n=1:240, 
 gm = gm*X(n); 
end 
gm = gm^(1/240); 
sfm = gm/am 
 
y = randn(240,1);  % y is 240-point long white noise 
Y = abs(fft(y)); 
am = mean(Y); 
gm = 1; 
for n=1:240, 
 gm = gm*Y(n); 
end 
gm = gm^(1/240); 
sfm = gm/am 

 
 
2.  Energy and Zero-Crossing Rate 
 
Energy of the j-th frame of the speech signal is calculated by the following: 
 

 E = 
1

2

0
( )

N

j
n

x n
−

=
∑  

 
where xj(n) is the n-th speech sample in the j-th frame.  Usually the energy of a voiced 
speech frame is large than that of an unvoiced speech frame. 
 
Zero-crossing rate is obtained by counting the sign changes (either from positive to 
negative or from negative to positive) in successive speech samples.  The ZCR of the 
voiced sound is lower than the ZCR of the unvoiced sound. 
 
 
 
 
 
 
 
MATLAB Assignment 7.1 
 
1. Implement an LPC analysis filter.  Choose M = 10 and find a new set of coefficients and 

the variance of the prediction error for every 30 ms-long frame.  The input is your own 
speech signal of about 2 seconds long.  Choose 8 kHz as the sampling frequency.  Plot 
and listen to the output residual error sequence. 
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2. Implement an LPC synthesis filter.  Use a new set of parameters for every 30 ms-long 

frame.  The input is the normalized residual error sequence we obtained in part 1.  Plot 
and listen to the reconstructed speech sequence. 

 
3. Quantize the normalized residual error with four fixed quantization levels.  

Reconstruct the speech using this quantized residual error.  Listen to the reconstructed 
speech. 

 
4. Quantize the original speech signal with four fixed quantization levels.  Listen to this 

quantized speech. 
 
5. Compare the quality of the reconstructed speeches of 4 and 5. 
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Problems 
 
7.1  Is the autocorrelation method accurate?  Under what condition the solution to the 

autocorrelation method will be the true solution? 
 
7.2 Show that Em ≤ Em−1 for any m.  In other words, show that |κm| < 1. 
 
7.3 Show equation (7.50). 
 
7.4 Show equation (7.51). 
 
 
Computer Assignment 7.1 
 
1. From the first 240-point long speech sequence, find the linear prediction coefficients 

using the efficient Levinson-Durbin recursive algorithm.  Use M = 10. 
 
2. Plot the magnitude response of the linear prediction model you obtained in part 1. 
 
3. Repeat parts 1 & 2 for the second 240-point long speech sequence. 
 
 
Computer Assignment 7.2 
 
1. Write a C program for a lattice implementation of the LPC analysis filter using 

equations (7.33) and (7.34) or Fig. 7.8.  Use M = 10 and a new set of parameters every 
30 ms (240 samples).  The input is the speech signal.  Plot the output residual error 
sequence. 

 
2. Write a C program for a lattice implementation of the LPC synthesis filter using Fig. 7.9.  

Use M = 10 and a new set of parameters every 30 ms (240 samples).  The input is the 
residual error sequence we obtained in part 1.  Plot the reconstructed speech sequence. 

 
 
Computer Assignment 7.3 
 
1. Using the first 240 speech samples, find 10 LSF parameters via the FFT method (512 

points). 
 
2. Compute and plot the magnitude response of the vocal tract model using equation 

(7.50).  Compare the result to the one you obtained in the previous assignment. 
 
3. Construct an LSF analysis filter and compute the 240-point error sequence. 
 
4. Construct an LSF synthesis filter and obtain the reconstructed speech. 
 


